Direction départementale des Territoires
Service de l'Eau et des Risques
Bureau Prévention des Risques Naturels et Hydrauliques

PRÉFET DE LA CÔTE-D'OR

PLAN DE PREVENTION DES RISQUES NATURELS D'INONDATION
DE LA TILLE ET DE SES AFFLUENTS
DE LA COMMUNE DE BRESSEY-SUR-TILLE

Note de présentation

Vu pour être annexé à l'arrêté préfectoral
n° 510 du 03 AOUT 2015

Le Préfet,

Éric DELZANT

Réalisation HYDRATEC / ASCONIT
Édition : Juin 2015
SOMMAIRE

1 DEMARCHE NATIONALE DE LUTTE CONTRE LES INONDATIONS ... 8

2 LE PPRI : ROLE – ELABORATION – CONTENU .. 9
 2.1 ROLE DU PPRI ... 9
 2.2 LA ZONE D’ETUDE .. 9
 2.3 PERIMETRE D’ETUDE .. 10
 2.4 PROCEDURE D’ELABORATION DU PPRI ... 10
 2.5 CONTENU DU PPRI .. 11

3 HYDROLOGIE DE LA TILLE ET DE SES AFFLUENTS ... 12
 3.1 GENERALITES .. 12
 3.2 PRESENTATION DES BASSINS VERSANTS .. 13
 3.2.1 La Tille .. 13
 3.2.2 Le Norges .. 13
 3.2.3 L’ignon ... 14
 3.3 STATIONS DE MESURE DES DEBITS .. 14
 3.4 CRUES HISTORIQUES ... 14
 3.5 CRUES DE REFERENCE ... 15

4 DEFINITION DE L’ALEA INONDATION ... 17
 4.1 CONSTRUCTION ET CALAGE DU MODELE HYDRAULIQUE 17
 4.2 DEFINITION DE LA CRUE DE REFERENCE ... 18
 4.3 CARACTERISATION DES NIVEAUX D’ALEA ... 18
 4.4 SYNTHESE DES ALEAS SUR LE TERRITOIRE DE LA COMMUNE 19

5 RECENSEMENT DES ENJEUX ... 20
 5.1 LA CLASSIFICATION DES ENJEUX ... 20
 5.2 METHODOLOGIE DE RECENSEMENT DES ENJEUX .. 22
 5.2.1 L’occupation du sol ... 22
 5.2.2 Les enjeux specifiques .. 22
 5.2.3 La consultation des acteurs locaux ... 23
 5.2.4 Le rendu cartographique ... 23
 5.3 SYNTHESE DU RECENSEMENT DES ENJEUX DE LA ZONE D’ETUDE 23
 5.4 SYNTHESE DES ENJEUX SUR LE TERRITOIRE DE LA COMMUNE 25

6 ZONAGE REGLEMENTAIRE .. 26

1 ANNEXE 1 : REPERES DE CRUES .. 28

2 ANNEXE 2 : ANALYSE HYDROLOGIQUE : AJUSTEMENTS STATISTIQUES 29

Note de presentation - PPRI Tille et affluents ... Juin 2015
2.1 Méthodologie de détermination des débits de crue

2.1.1 Calcul du débit décennal ... 29
2.1.2 Calcul des débits de pointe supérieurs à décennaux 30
2.2 Synthèse .. 31
 2.2.1 Débits de crue de la Tille à Crécey-sur-Tille 31
 2.2.2 Débits de crue de la Tille à Arceau 33
 2.2.3 Débits de crue de la Tille à Cessey-sur-Tille 34
 2.2.4 Synthèse des débits de pointe de la Tille 36
 2.2.5 Débits de crue de l'Ignon .. 36
 2.2.6 Débits de crue de la Norges ... 38
 2.2.7 Débits de crue de la Venelle ... 40
2.3 Construction des hydrogrammes de référence aux stations 42

2.4 Débits d’entrée du modèle
 2.4.1 Ignon, Tille et Norges amont 44
 2.4.2 Reconstitution des apports intermédiaires entre stations ... 44
 2.4.3 Modélisation pluie – débit ... 45

ANNEXE 3 : Modélisation hydraulique ... 47

2.5 Présentation .. 47
 2.5.1 Généralités .. 47
 2.5.2 Crues modélisées ... 47
 2.5.3 Aire d’étude, emprise du modèle 47

2.6 Construction du modèle hydraulique 47
 2.6.1 Le logiciel de simulation HYDRARIV 47
 2.6.2 Données topographiques et bathymétriques 49
 2.6.3 Schématisation ... 49
 2.6.4 Définition des apports hydrologiques 51
 2.6.5 Calage du modèle ... 51
Table des illustrations

Tableau 1 - Caractéristiques de la Tille et de son bassin versant ... 13
Tableau 2 - Caractéristiques de la Norges et de son bassin versant ... 13
Tableau 3 - Caractéristiques des stations hydrométriques .. 14
Tableau 4 - Débits estimés pour les crues historiques récentes de la Tille ... 15
Tableau 5 - Débits et périodes de retour des crues historiques, estimation des débits décennal et centennal au droit des stations de mesure .. 16
Tableau 6 - Territoire en zone inondable par commune .. 23
Tableau 7 - Occupation du sol en zone inondable ... 24
Tableau 1 : Débits caractéristiques de crue sur la Tille à Crécey, avec les deux méthodes .. 33
Tableau 2 : Débits caractéristiques de crue sur la Tille .. 36
Tableau 3 : Débits caractéristiques de crue sur l'Ignon (Villecomte*Diénay) ... 37
Tableau 4 : Débits caractéristiques de crue sur la Norges ... 40
Tableau 5 : Débits caractéristiques de crue sur la Venelle (Selongey) ... 41
<table>
<thead>
<tr>
<th>Table des illustrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1 : Présentation du bassin versant de la Tille et ses affluents</td>
</tr>
<tr>
<td>Figure 2 : Répartition des zones inondables par type d'aléa</td>
</tr>
<tr>
<td>Figure 1 : La Tille à Crécy - Ajustement statistique droite de Gumbel + gradex progressif</td>
</tr>
<tr>
<td>Figure 2 : La Tille à Crécy - Ajustement statistique avec prise en compte de la cassure</td>
</tr>
<tr>
<td>Figure 3 : La Tille à Arceau - Ajustement statistique des débits</td>
</tr>
<tr>
<td>Figure 4 : La Tille à Cessey-sur-Tille - Ajustement statistique des débits</td>
</tr>
<tr>
<td>Figure 5 : L'Igonon à Villecomte et Diénay - Ajustement statistique des débits</td>
</tr>
<tr>
<td>Figure 6 : La Norges à Saint Julien - Ajustement statistique des débits</td>
</tr>
<tr>
<td>Figure 7 : La Norges à Genlis - Ajustement statistique des débits</td>
</tr>
<tr>
<td>Figure 8 : La venelle à Selongey - Ajustement statistique des débits</td>
</tr>
<tr>
<td>Figure 9 : Calage du paramètre de forme α - Station de Crécy-sur-Tille</td>
</tr>
<tr>
<td>Figure 10 : Hydrogrammes synthétiques - Station de Crécy-sur-Tille</td>
</tr>
<tr>
<td>Figure 11 : définition des apports des sous bassins versants</td>
</tr>
</tbody>
</table>
GLOSSAIRE

Bassin versant : surface délimitée par des points hauts sur laquelle tous les ruisseaux sont collectés vers un point bas correspondant à un fossé ou un cours d'eau.

Bief : secteur d'un cours d'eau compris entre 2 chutes ou 2 séries de rapides. Généralement, les vitesses du courant y sont faibles.

Crue : gonfllement d'un cours d'eau dû à des apports pluviométriques importants jusqu'à débordement de son lit mineur ; la cote du cours d'eau en crue est alors nettement supérieure à sa cote habituelle.

Curage : Extraction de matériaux alluviaux dans le lit de la rivière provoquée soit par l'homme (curage mécanique) soit par les écoulements de crue (curage hydraulique).

Les curages mécaniques sont interdits dans les lits mineurs des cours d'eau. Ils peuvent toutefois être autorisés dans certains cas (nécessité pour la sécurité des personnes par exemple) après établissement d'une demande d'autorisation.

Embâcle : terme général désignant un amoncellement de troncs d'arbres, de débris divers dans un cours d'eau, pouvant former obstacle lors d'une crue.

Étage : débit le plus faible de l'année, ou niveau moyen des basses eaux établi sur plusieurs années d'observation.

Exutoire : point de déversement d'un bassin versant.

Hydrogramme : courbe représentant les débits en fonction du temps en un point donné (lors d'une crue).

Laisse de crue : limite supérieure atteinte par les écoulements de crue et matérialisée en général par des dépôts d'alluvions ou de corps flottants (bois morts,...).

Ligne d'eau : profil en long de la surface d'un courant d'eau dans un canal ouvert dit "à surface libre" ou dans un cours d'eau.

Lit majeur : zone d'écoulements occupée par une rivière en crue (plaine d'inondation).

Lit mineur : chenal d'écoulement creusé par la rivière pour les débits ordinaires (débits non débordants).

Modèle mathématique : outil de simulation informatique permettant de calculer avec les formules de l'hydraulique les conditions de débit et de hauteur en fonction du temps en tout point d'un cours d'eau, et de représenter ainsi les écoulements dans les conditions d'aménagement actuelles ou futures. La représentation des modèles peut être filaire ou bidimensionnelle.

Module : débit moyen du cours d'eau.
Morphologie du lit : description de la forme du fond et du tracé du cours d'eau, et de ses évolutions dans le temps et dans l'espace.

Nappe phréatique, nappe libre : eau qui se trouve dans la zone de saturation du sous-sol. Cette eau peut alimenter ou drainer des cours d'eau superficiels.

Période de retour : La période de retour d'une crue T, exprimée en années, correspond à la crue maximale, exprimée en m³/s, observée une fois dans ce laps de temps T. Par exemple la crue décennale est l'événement maximal ne pouvant se produire que 10 fois sur une durée de 100 ans ; l'intervalle entre deux événements décennaux peut être inférieur à 10 ans ou supérieur à plusieurs décennies. Les deux crues les plus fortes sur une période de 100 ans seront au moins cinquantennales.

Protection de berge : ouvrage hydraulique servant à stabiliser la berge et à supprimer les érosions. Les protections peuvent être de plusieurs types : enrochements, murs en béton, gabions, plantations,....

Recalibrage : action consistant à reprofiler le lit et les berges dans le but d'agrandir la section hydraulique de la rivière. Le recalibrage peut entraîner un déséquilibre hydrodynamique du cours d'eau (déséquilibre entre la capacité de transport et la charge solide de la rivière) et se révéler à terme inefficace voir dangereux (réalluvionnement progressif du lit, érosion régressive du fond,....).

Remous : perturbation de la ligne d'eau se propageant vers l'amont et provoquée par une influence aval.

Rugosité du lit : grandeur utilisée en hydraulique pour caractériser la résistance aux écoulements d'une conduite ou d'un cours d'eau. Pour un cours d'eau, le coefficient de rugosité intègre l'aspect des berges et du lit (taux d'encombrement, enrochements éventuels, brissolies, péri en béton,...).
La zone d'étude concerne les inondations par débordements de la Tille et de la Norges et de leurs principaux affluents :
- L'Ignon,
- La Flaccièrè,
- Le Bas-Mont,
- Le Gourmorault,
- La Rivière Neuve.

La présente étude ne cartographie pas les inondations par remontées de nappes.

2.3 Périmètre d'étude

Le périmètre d'étude du présent PPRI concerne le territoire de la commune de Bressey-sur-Tille.

Cette commune est impactée par les débordements de la Tille, du Gourmorault, du Ruisseau de la Fourche, du Canal de la Femme Sans Tête, de la Rivière Neuve et du Bassot.

2.4 Procédure d'élaboration du PPRI

L'élaboration du PPRI est menée par le préfet qui désigne le service déconcentré de l'État qui sera chargé d'instruire le projet.

La procédure normale d'élaboration d'un PPRI comporte six phases :

1) arrêté de prescription par le préfet. Cet arrêté est publié et notifié aux maires, il comporte les modalités de concertation.

2) élaboration du projet.

3) consultation des conseils municipaux des communes concernées, autres consultations éventuelles (conseils généraux, régionaux, du centre national de la propriété forestière, de la chambre d'agriculture) et enquête publique.

4) projet éventuellement modifié.

5) arrêté d'approbation du PPRI par le préfet qui est publié, affiché en mairie. Le dossier est mis à disposition du public.

6) Annexion dans les documents d'urbanisme (POS, PLU, ...).
2.5 **Contenu du PPRi**

Le document final du PPRi se compose d'une note de présentation, de documents graphiques et d'un règlement.

La note de présentation expose : les raisons de la prescription du PPRi, les phénomènes naturels connus, les aléas, les enjeux, les objectifs recherchés pour la prévention des risques et le choix du zonage.

Les documents graphiques sont composés de 3 jeux de cartes présentant : l'aléa, les enjeux au regard de la vulnérabilité, le zonage réglementaire.

Le règlement précise : les mesures d'interdiction, d'autorisation et les prescriptions, les mesures de prévention, de protection et de sauvegarde. Le règlement mentionne, le cas échéant, celles des mesures dont la mise en œuvre est obligatoire et le délai fixé pour leur mise en œuvre.
3 HYDROLOGIE DE LA TILLE ET DE SES AFFLUENTS

L'analyse hydrologique a pour objectif de quantifier les débits de crue de la Tille et de ses principaux affluents ; elle s'appuie sur une étude statistique des débits mesurés sur le bassin versant et sur une étude détaillée des crues historiques : mécanismes de genèse et fréquences d'occurrence.

Ces éléments permettent de définir les caractéristiques des événements de référence pour lesquels ont été réalisées les cartes d'aléa.

3.1 GÉNÉRALITÉS

La carte ci-après présente les bassins versants de la Tille, ainsi que les sous bassins versants de ses principaux affluents.

Figure 1 : Présentation du bassin versant de la Tille et ses affluents

Note de présentation - PPRI Tille et affluents
Juin 2015
3.2 Présentation des bassins versants

3.2.1 La Tille

La Tille est un affluent rive droite de la Saône d’une longueur totale de 83 km. Son bassin versant présente une surface totale de 1310 km². Il est limité au Nord par le plateau de Langres, à l'Ouest par les sommets de St Seine l'Abbaye et l'agglomération Dijonnaise et enfin à l'Est par la plaine alluviale de la Saône.

La Tille prend sa source sur le plateau de Langres en Côte-d’Or au niveau de la commune de Salives et se jette dans la Saône aux Maillys. Ses principaux affluents sont l'Ignon, la Norges, la Crosne et l'Arnison.

De la source jusqu'à Lux, la Tille a un tracé relativement naturel. A partir de Beire-le-Châtel, la Tille a été déplacée afin d'alimenter des moulins à eau ce qui a conduit à l'artificialisation du cours d'eau dans la partie aval.

La géologie du bassin est caractérisée par une dominance de calcaires fortement karstifiés à l'amont induisant la présence d'importantes réserves d'eaux souterraines.

Les caractéristiques géométriques du bassin versant jusqu'à la confluence avec la Saône sont données dans le Tableau 1.

<table>
<thead>
<tr>
<th>Étendue</th>
<th>Linéaire du cours d'eau (km)</th>
<th>Bassin versant (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>De la source à Cessey-sur-Tille</td>
<td>81</td>
<td>744</td>
</tr>
<tr>
<td>De la source à la confluence avec la Norges</td>
<td>70</td>
<td>785</td>
</tr>
<tr>
<td>De la source à Champdoré</td>
<td>75</td>
<td>1103</td>
</tr>
</tbody>
</table>

Tableau 1 - Caractéristiques de la Tille et de son bassin versant

3.2.2 La Norges

La Norges est un affluent rive droite de la Tille d'une longueur totale de 33 km. Son bassin versant a une surface totale de 268 km². Elle prend sa source à une altitude de 265 m au centre du village de NORGES-la-Ville et se jette en rive droite de la Tille en aval de la commune de Genlis. Les caractéristiques géométriques de son bassin versant jusqu'à la confluence avec la Tille sont données dans le Tableau 2.

<table>
<thead>
<tr>
<th>Étendue</th>
<th>Linéaire du cours d'eau (km)</th>
<th>Bassin versant (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>De la source à Magny sur Tille en amont de la confluence avec le Champlaison et le Gourmauflit</td>
<td>25</td>
<td>208</td>
</tr>
<tr>
<td>De la source à Genlis</td>
<td>29</td>
<td>284</td>
</tr>
<tr>
<td>De la source à la confluence avec la Tille</td>
<td>33</td>
<td>268</td>
</tr>
</tbody>
</table>

Tableau 2 - Caractéristiques de la Norges et de son bassin versant

Note de présentation - PPRI Tille et affluents

Juin 2015
3.2.3 L'Ignon

L'Ignon est un affluent rive droite de la Tille.

L'Ignon a une longueur totale de 44 km. Son bassin versant a une surface totale de 378 km².

Il prend sa source à l'amont de Poncey-sur-l'Ignon sur le plateau de Langres. Il conflue dans la Tille à Til-Châtel.

3.3 Stations de mesure des débits

Le réseau de mesures permettant la surveillance des crues de la Tille et de ses principaux affluents se compose sur le secteur concerné ou en amont et aval immédiat de celui-ci de :

- Tille : 3 stations ;
- Norges : 2 stations ;
- Ignon : 2 stations.

Les caractéristiques des stations présentes sur les cours d'eau étudiés sont données dans le Tableau 3.

<table>
<thead>
<tr>
<th>Station</th>
<th>Cours d'eau</th>
<th>Années de mesure</th>
<th>Bassin versant contrôlé</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crécey-sur-Tille</td>
<td>Tille</td>
<td>1972-2013</td>
<td>231 km²</td>
</tr>
<tr>
<td>Arceau</td>
<td>Tille</td>
<td>1966-2013</td>
<td>846 km²</td>
</tr>
<tr>
<td>Cassey-sur-Tille</td>
<td>Tille</td>
<td>1963-2013</td>
<td>894 km²</td>
</tr>
<tr>
<td>Saint Julien</td>
<td>Norges</td>
<td>2003-2013</td>
<td>109 km²</td>
</tr>
<tr>
<td>Genlis</td>
<td>Norges</td>
<td>1963 -2012</td>
<td>266 km²</td>
</tr>
<tr>
<td>Villecomte</td>
<td>Ignon</td>
<td>1987-2013</td>
<td>304 km²</td>
</tr>
<tr>
<td>Diényay</td>
<td>Ignon</td>
<td>1973-1986</td>
<td>310 km²</td>
</tr>
</tbody>
</table>

Tableau 3 - Caractéristiques des stations hydrométriques

3.4 Crues historiques

La connaissance des crues historiques est fondamentale pour la compréhension des écoulements en crue sur l'ensemble du bassin versant. Des rencontres avec les différents syndicats de rivière, les communes et les riverains ont été réalisées.

L'ensemble des repères de crue collectés est présenté en annexe 1.

Des inondations importantes ont également touché de plus petits affluents, notamment à Coutelen où les crues du Rainot de 1955 et 1965 ont inondé le village sous près d'un mètre d'eau. Des bassins d'orage ont également été construits en amont de Chevigny Saint-Sauveur pour contenir les ruissellements générés par le développement de l'urbanisation sur les têtes de bassins versants.

Les débits de pointe évalués ou estimés aux différentes stations de mesures sur la Tille (Crécey-sur-Tille et Arceau) et l'Ignon (Villecomte) pour les différentes crues historiques récentes sont présentés dans le Tableau 4. Pour les crues les plus anciennes (1866, 1910, 1955 et 1965), aucune station n'était en place pour mesurer et restituer les hydrogrammes de crue.

<table>
<thead>
<tr>
<th></th>
<th>2001</th>
<th>2006</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crécey-sur-Tille</td>
<td>29.20</td>
<td>34.20</td>
<td>52.3</td>
</tr>
<tr>
<td>Villecomte</td>
<td>45.10</td>
<td>47.50</td>
<td>52.10</td>
</tr>
<tr>
<td>Arceau</td>
<td>85.10</td>
<td>81.10</td>
<td>98.60</td>
</tr>
</tbody>
</table>

Tableau 4 - Débits estimés pour les crues historiques récentes de la Tille.

3.5 Crues de référence

Une analyse statistique des débits maxima annuels permet de définir la période de retour des crues historiques mesurées sur les cours d'eau jaugés, et de définir les débits de période de retour centennale.

La période de retour d'une crue exprime en années la probabilité de voir se produire un tel événement chaque année. Par exemple, une crue de période de retour 2 ans a un risque sur deux d'être atteinte ou dépassée chaque année.
Une crue centennale est une crue qui a un risque sur 100 d'être atteinte ou dépassée chaque année. Cependant, une crue centennale ne se produit pas tous les 100 ans.

<table>
<thead>
<tr>
<th>Cours d'eau</th>
<th>Station</th>
<th>Surface BV (km²)</th>
<th>Q10 (m³/s)</th>
<th>Q100 (m³/s)</th>
<th>2001 Débit (m³/s)</th>
<th>T (ans)</th>
<th>2006 Débit (m³/s)</th>
<th>T (ans)</th>
<th>2013 Débit (m³/s)</th>
<th>T (ans)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tille</td>
<td>Crécy-sur-Tille</td>
<td>231</td>
<td>29.5</td>
<td>51.1</td>
<td>29.20</td>
<td>9</td>
<td>34.20</td>
<td>21</td>
<td>52.3</td>
<td>109</td>
</tr>
<tr>
<td>Ignon</td>
<td>Villecomte</td>
<td>304</td>
<td>45.5</td>
<td>63.7</td>
<td>45.10</td>
<td>9</td>
<td>47.50</td>
<td>17</td>
<td>52.10</td>
<td>35</td>
</tr>
<tr>
<td>Tille</td>
<td>Arceau</td>
<td>846</td>
<td>74.2</td>
<td>105.8</td>
<td>85.10</td>
<td>28</td>
<td>81.1</td>
<td>19</td>
<td>98.60</td>
<td>65</td>
</tr>
</tbody>
</table>

*T : période de retour, en années

Tableau 5 - Débits et périodes de retour des crues historiques, estimation des débits décennal et centennal au droit des stations de mesure

Le détail de l'analyse statistique des débits de crue est présenté en annexe 2.
4 DEFINITION DE L'ALEA INONDATION

4.1 CONSTRUCTION ET CALAGE DU MODELE HYDRAULIQUE

Un modèle numérique de simulation des écoulements des vallées aval de la Tille et de ses affluents est mis en œuvre afin de définir l'âleia inondation par débordements, à partir de levés topographiques détaillés.

Un modèle hydraulique est un outil informatique de calcul qui permet :
- de reconstituer des crues historiques connues,
- de simuler des crues plus fortes encore.

Il permet de définir les secteurs inondés pour un événement hydrologique donné, et de quantifier les vitesses d'écoulement et les hauteurs de submersion en tout point de ces secteurs.

Pour ce faire, il s'appuie sur une schématisation du lit mineur, du relief de la vallée et des ouvrages (ponts, vannes...). Les calculs des conditions d'écoulement sont effectués pour différentes hypothèses de débits des cours d'eau.

La vallée de la Tille de Is-sur-Tille jusqu'à l'autoroute A39 a été modélisée par un unique modèle TIL.

Ce modèle, mis en œuvre pour la réalisation des études de PPRi des 8 communes de la Tille et de ses affluents, a été construit à partir de levés topographiques détaillés réalisés entre 2012 et 2013 :
- Profils en travers du lit mineur de la Tille, de ses affluents et bras secondaires,
- Plans côtés de l'ensemble des ouvrages hydrauliques (ponts, vannes, seuils...),
- Levé photogrammétrique du lit majeur couvrant l'ensemble du bassin versant.

Le détail de la modélisation hydraulique mise en œuvre est présenté en annexe 3.

Le modèle est calé sur la crue de mai 2013, par comparaison avec les repères de crue et les informations qualitatives sur le déroulement de l'inondation recueillies sur le terrain dans le cadre d'enquêtes spécifiques effectuées auprès des riverains et des communes.

Les crues de 1955 et 1965, plus fortes que celle de 2013 en terme de hauteurs d'eau sur plusieurs secteurs, n'ont pas été retenues pour le calage du modèle compte tenu des nombreuses modifications des conditions d'écoulement survenues depuis (curages, endiguements, bras de décharge...) et de l'absence de données hydrologiques permettant de caractériser ces événements. De même, la crue de 2001 n'a pas été retenue par manque d'informations sur les hauteurs d'eau et de connaissances de l'enveloppe maximale d'inondation.
4.2 Définition de la crue de référence

La circulaire du 24 janvier 1994 précise que l'événement de référence à retenir pour l'aléa est « la plus forte crue connue et, dans le cas où celle-ci serait plus faible qu'une crue de référence centennale, cette dernière ».

Compte tenu des conclusions de l'étude hydrologique, la crue de référence centennale est retenue pour la définition de l'aléa. Le modèle hydraulique est repris pour simuler la crue centennale.

4.3 Caractérisation des niveaux d'aléa

Les niveaux d'aléa sont déterminés en fonction de l'intensité des paramètres physiques de l'inondation de référence, qui se traduisent en termes de dommages aux biens et de gravité pour les personnes :

- hauteurs de submersion, calculées par croisement entre les résultats du modèle hydraulique et la topographie levée,
- vitesses d'écoulement calculées par le modèle.

Trois classes d'aléa sont ainsi définies, et reportées sur la carte d'aléas :

- Aléa fort : hauteur d'eau supérieure à 1m ou vitesse d'écoulement supérieure à 1m/s.
- Aléa moyen : hauteur d'eau comprise entre 0,5m et 1m si la vitesse est inférieure à 1m/s, ou vitesse d'écoulement comprise entre 0,5m/s et 1m/s si la hauteur d'eau est inférieure à 1m.
- Aléa faible : hauteur d'eau inférieure à 0,5m, et vitesse inférieure à 0,5m/s.
4.4 Synthèse des aléas sur le territoire de la commune

Le territoire communal est inondé par les débordements de la Tille, qui surviennent plusieurs kilomètres en amont des limites communales (en amont de la route départementale d’Arc sur Tille). Ces débordements s’écoulent en lit majeur, et sont repris partiellement par différents cours d’eau naturellement alimentés par des prises d’eau de la Tille (le Gourmerault depuis Arcelot via Arc sur Tille) ou creusés pour drainer la vallée (ruisseau de la Fourche, canal de la femme sans tête, rivière neuve).

Le Bassot déborde en rive gauche vers le lotissement du Clair Bois et en rive droite vers le centre du bourg.
5 RECENSEMENT DES ENJEUX

Le recensement des enjeux consiste à faire un inventaire des biens et des activités qui sont situés dans l'emprise de la zone inondable d'ocurrence centennale.

L'objectif est d'identifier et de qualifier les différents enjeux potentiellement soumis au risque d'inondation. Le croisement de la carte des enjeux avec celle de l'aléa permettra de définir le zonage réglementaire et le règlement qui l'accompagne.

Le guide méthodologique PPRI définit l'évaluation des enjeux comme une « étape indispensable de la démarche qui permet d'assurer la cohérence entre les objectifs de prévention des risques et les dispositions qui seront retenues. Elle sert donc d'interface avec la carte des aléas pour délimiter le plan de zonage réglementaire, préciser le contenu du règlement, et formuler un certain nombre de recommandations sur les mesures de prévention, de protection et de sauvegarde ».

5.1 LA CLASSIFICATION DES ENJEUX

Le choix des enjeux à recenser et la méthodologie appliquée sont issus :
- des recommandations du Guide méthodologique de réalisation des Plans de Prévention des Risques ;
- de la nomenclature réalisée par la Commission de Validation des Données pour l'Information Spécialisée (COVADIS). Ce travail vise à standardiser les données géographiques des Plans de Prévention des Risques Naturels et Technologiques.

La nomenclature « PPRI » a été élaborée comme suit :
- les catégories principales sont issues du paragraphe 3.3 du guide PPRI,

Les enjeux répertoriés sont les suivants :

1. Zones urbanisées
 Zones résidentielles :
 - Habitat dense
 - Habitat peu dense
 - Habitat diffus
 - Projet d'urbanisation future
 - Parcs et jardins

 Zones d'activités économiques :
 - Zones d'activités commerciales
 - Zones industrielles
 - Zones d'activités futures
 - Zones d'activités artisanales et sièges d'entreprise
 - Exploitation agricole
II. Zones naturelles et agricoles

Zones naturelles :
- Forêt
- Zones naturelles non boisées
- Zones humides
- Réseau hydrographique/surfaces en eau

Zones agricoles :
- Prairies agricoles/Pâturages
- Grande culture
- Peupliers
- Jardins familiaux

III. Etablissements recevant du public

- Structures d'accueil pour personnes âgées
- Salle des fêtes
- Restaurants et débits de boissons
- Etablissements d'enseignement
- Bibliothèques
- Etablissements de soins
- Etablissements de culte
- Administrations
- Etablissements sportifs couverts

IV. Espace ouvert recevant du public

- Espaces de loisirs / Terrain de sport
- Terrain de jeux pour enfants
- Aire d'accueil des gens du voyage
- Cimetière

V. Ouvrage ou équipement d'intérêt général

- Caserne de pompiers
- Zone militaire
- Déchetterie
- Château d'eau
- Ancienne décharge
- Stations de pompage, de traitement, de captage ou poste de relevement
- Station d'épuration
- Postes électriques ou téléphoniques

Noté de présentation - PPRi Tille et affluents

Juin 2015
VI. Enjeu patrimonial

Château
Lavoir
Site / Zone archéologique

5.2 Méthodologie de recensement des enjeux

Le recensement des enjeux repose dans un premier temps sur l'analyse de l'occupation des sols qui vise à délimiter les espaces urbanisés et les zones d'expansion des crues. Les zones d'expansion des crues correspondent aux espaces naturels et agricoles qui sont "non urbanisés ou peu urbanisés et peu aménagés".

Dans un second temps, l'inventaire des enjeux a consisté en l'identification d'enjeux spécifiques qui touchent à la sécurité et aux fonctions vitales des territoires, tels que les établissements recevant du public, les activités économiques, ...

L'identification des enjeux a été faite sur la base d'une analyse documentaire et de la consultation des acteurs locaux.

5.2.1 L'occupation du sol.

L'analyse de l'occupation du sol repose sur la définition :

- des zones urbanisées : zones d'habitat (dense, peu dense, diffus, habitat futur), zones d'activités économiques (commerciales, industrielles, zones d'activités futures);
- des zones naturelles (forêt, zone naturelle non boisée, zones humides,...) et agricoles (prairies, grandes cultures, jardins familiaux,...).

L'identification, la localisation et la qualification des espaces urbanisés et des zones peu ou pas urbanisées ont été réalisées par l'interprétation de Corine Land Cover, du SCAN 25 et des photographies aériennes.

Les projets d'urbanisation future ont été recueillis auprès des élus locaux lors des visites de terrain.

5.2.2 Les enjeux spécifiques

L'identification des enjeux spécifiques repose sur l'inventaire et la caractérisation des éléments suivants :

- Établissements recevant du public : structures d'accueil pour personnes âgées, salles des fêtes, restaurants, bibliothèques, écoles, administrations,...
- Espaces ouverts recevant du public : terrain de sport, terrain de jeux pour enfants, cimetière.
- Ouvrages ou équipements d'intérêt général : SDIS, postes électriques ou téléphoniques, STEP, poste de relevement AEP, station de pompage, de captage AEP, déchetterie,...
- Enjeux patrimoniaux : château, lavoir, ...

Les enjeux spécifiques ont été recensés sur la base d'une analyse documentaire (sites Internet des communes, base de données Mérimée, Pages Jaunes, Google Earth,...).
Cette analyse documentaire a été complétée par une visite de terrain et la consultation des maires de chaque commune (voir paragraphe suivant pour la présentation du déroulement de la consultation des acteurs locaux).

5.2.3 La consultation des acteurs locaux

La consultation des acteurs locaux est une étape essentielle pour l’inventaire des enjeux. Elle permet de :
- Valider et compléter les enjeux inventoriés à partir de l’analyse documentaire,
- Prendre en compte une dimension prospective du territoire en inventoriant les projets d’urbanisation future,
- Prendre des photographies.

Les élus (maire et/ou leurs représentants) de chaque commune ont été consultés. Cette consultation s’est déroulée en cinq étapes :
- Envoi préalable aux maires d’un courrier accompagné d’un guide d’entretien
- Prise de rendez-vous avec les maires et/ou leurs adjoints
- Entretiens sur place (sauf pour 1 commune : entretien téléphonique) et visites de chaque commune
- Envoi des comptes-rendus avec un projet de carte
- Corrections et validation des comptes-rendus modifiés

5.2.4 Le rendu cartographique

Les enjeux inventoriés ont été digitalisés sous SIG puis cartographiés sur fond cadastral au 1/5 000ème.

5.3 Synthèse du recensement des enjeux de la zone d’étude

Sur l’ensemble des 8 communes étudiées objet d’un PPRI, la surface inondable représente moins de 5% de la superficie totale. Sur les 475ha situés en zone inondable, 208ha sont en zone d’aléa fort et 185ha sont en zone d’aléa moyen.

La surface inondable représente entre 4 et 40% des territoires communaux selon les communes concernées (Tableau 6).

<table>
<thead>
<tr>
<th>Commune</th>
<th>% du territoire en zone inondable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc-sur-Tille</td>
<td>21.8</td>
</tr>
<tr>
<td>Bressey-sur-Tille</td>
<td>37.5</td>
</tr>
<tr>
<td>Chevigny-Saint-Sauveur</td>
<td>14.4</td>
</tr>
<tr>
<td>Coutemon</td>
<td>21.6</td>
</tr>
<tr>
<td>Is-sur-Tille</td>
<td>8.3</td>
</tr>
<tr>
<td>Izier</td>
<td>36.1</td>
</tr>
<tr>
<td>Saint-Julien</td>
<td>11.6</td>
</tr>
<tr>
<td>Varols-et-Chaignot</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Tableau 6 - Territoire en zone inondable par commune

Note de présentation - PPRI Tille et affluents

Juin 2015
Sur l'ensemble des communes, l'occupation des sols en zone inondable est dominée par les surfaces agricoles (68%) et naturelles (22%).

Les zones d'habitat représentent 4 % du territoire potentiellement inondable (76 ha) et les zones d'activités artisanales et industrielles couvrent 22 ha soit un peu plus de 1% du secteur inondable.

<table>
<thead>
<tr>
<th>Communes</th>
<th>% de la surface inondable en zone d'habitat</th>
<th>% de la surface inondable en zone agricoles</th>
<th>% de la surface inondable en zone d'activités industrielles et artisanales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc-sur-Tille</td>
<td>1.9</td>
<td>59.7</td>
<td>1.0</td>
</tr>
<tr>
<td>Bressey-sur-Tille</td>
<td>5.0</td>
<td>55.8</td>
<td>0.6</td>
</tr>
<tr>
<td>Chevigny-Saint-Sauveur</td>
<td>11.6</td>
<td>51.1</td>
<td>4.8</td>
</tr>
<tr>
<td>Couternon</td>
<td>2.2</td>
<td>78.6</td>
<td>2.1</td>
</tr>
<tr>
<td>Is-sur-Tille</td>
<td>6.6</td>
<td>71.6</td>
<td>0.1</td>
</tr>
<tr>
<td>Izier</td>
<td>3.6</td>
<td>84.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Saint-Julien</td>
<td>1.0</td>
<td>85.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Varois-et-Chaignot</td>
<td>0.8</td>
<td>88.6</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Tableau 7 - Occupation du sol en zone inondable
5.4 SYNTHÈSE DES ENJEUX SUR LE TERRITOIRE DE LA COMMUNE

À Bressey-sur-Tille, 37,5 % du territoire de la commune se trouve en zone inondable dont 10% en zone d'aliéa fort et 27 % en zone d'aliéa moyen. 56 % de la zone inondable sont des terres agricoles contre seulement 5 % de zones d'habitat.
6 ZONAGE RÉGLEMENTAIRE

Le plan de zonage réglementaire traduit cartographiquement sur l'ensemble du territoire soumis à l'aléa inondation les mesures d'interdiction, d'autorisation et les prescriptions d'aménagement ainsi que les mesures de prévention, de protection et de sauvegarde mises en œuvre ; il est fondé sur le croisement entre la carte d'aléas, qui indique la nature et l'intensité des risques naturels, et la carte des enjeux. Ce croisement permet d'évaluer le risque.

Deux classes de zonage sont ainsi retenues :

- Les zones rouges :
 1. Secteurs situés en aléa fort, quelle que soit l'occupation du sol,
 Ces secteurs correspondent aux zones dites « de danger » mentionnées à l'article L 562-1 du code de l'environnement repris dans le paragraphe 2.1 de la présente note de présentation.
 2. Champs d'expansion des crues et axes d'écoulement à préserver afin de ne pas aggraver l'aléa en amont ou en aval, quel que soit l'aléa défini (faible, moyen ou fort).
 Ces secteurs de champ d'expansion de crue correspondent, en fonction de la nature de l'aléa, aux zones dites « de danger » là où l'aléa est qualifié de « fort », et aux zones dites « de précaution » là où l'aléa a été qualifié de « moyen ou faible ».

- Les zones bleues : elles correspondent aux secteurs où de forts enjeux sont relevés, avec un aléa faible à moyen :
 1. Centres urbains,
 2. Parkings, voiries,

Ces secteurs correspondent aux zones dites « de précaution » mentionnées à l'article L 562-1 du code de l'environnement repris dans le paragraphe 2.1 de la présente note de présentation.

Note de présentation - PPRI Tille et affluents Juin 2015
1 ANNEXE 1 : REPERES DE CRUES

Des enquêtes de terrain ont permis de recenser les repères de crue visibles sur l’ensemble du territoire de la Tille et de ses affluents.

Chaque repère de crue identifié a fait l’objet d’une fiche, avec plan de situation, photographie, coordonnées de la personne qui nous a renseignés. Ces repères de crue sont ensuite rattachés au NGF.
FICHE DE REPERE DE CRUE – VC1

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>VC1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de donnée:</td>
<td>Témoignage</td>
</tr>
<tr>
<td></td>
<td>Mme Ferrand</td>
</tr>
<tr>
<td>Cours d'eau:</td>
<td>Ruisseau du Bas-Mont</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Varois-et-Chaignot</td>
</tr>
<tr>
<td>Adresse:</td>
<td>Pont de la RD sur le Ruisseau du Bas-Mont</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 860329.31</td>
</tr>
<tr>
<td></td>
<td>Y= 6696219.79</td>
</tr>
<tr>
<td>Date de l’événement:</td>
<td>1965</td>
</tr>
<tr>
<td>Cote:</td>
<td>218.14</td>
</tr>
<tr>
<td>Repère:</td>
<td>Arase de la cheminé du regard d'eau usée,</td>
</tr>
<tr>
<td></td>
<td>situé sur la rive gauche du Bas-Mont</td>
</tr>
<tr>
<td>Précision:</td>
<td>Témoignage direct</td>
</tr>
<tr>
<td>Commentaire:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plan de situation</th>
<th>Photo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FICHE DE REPÈRE DE CRUE – CS1

<table>
<thead>
<tr>
<th>Identifier:</th>
<th>CS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cours d'eau:</td>
<td>Goulotte</td>
</tr>
<tr>
<td>Source de donnée:</td>
<td>Témoignage</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Chevigny-Saint-Sauveur</td>
</tr>
<tr>
<td>Adresse:</td>
<td>Petit pont au-dessus de la Goulotte, Place du Monument aux Morts</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 861361.20, Y= 6690918.26</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>1965</td>
</tr>
<tr>
<td>Repère:</td>
<td>Voûte en pierre du pont</td>
</tr>
<tr>
<td>Cote:</td>
<td>210.2</td>
</tr>
<tr>
<td>Précision:</td>
<td>Témoignage direct peu fiable</td>
</tr>
</tbody>
</table>

Commentaire: Repère incertain, car un riverain a apporté un témoignage contradictoire, parlant d'une hauteur d'eau de 20 à 80 cm sur l'avenue de la République.
FICHE DE REPÈRE DE CRUE – IT1

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>IT1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cours d'eau:</td>
<td>Ruisseau de l'Ignon</td>
</tr>
<tr>
<td>Source de donnée:</td>
<td>Témoignage</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Is-sur-Tille</td>
</tr>
<tr>
<td>Adresse:</td>
<td>3 rue des Capucins</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 858630.25</td>
</tr>
<tr>
<td></td>
<td>Y= 6715829.56</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>2006</td>
</tr>
<tr>
<td>Cote:</td>
<td>276.71</td>
</tr>
<tr>
<td>Repère:</td>
<td>dalles de la terrasse du restaurant 'Côté Rivière'</td>
</tr>
<tr>
<td>Précision:</td>
<td>Témoignage direct</td>
</tr>
<tr>
<td>Commentaire:</td>
<td>L'eau arrive à fleur de la terrasse et de la passerelle, mais pas devant le restaurant.</td>
</tr>
</tbody>
</table>

Plan de situation

Photo
FICHE DE REPÈRE DE CRUE – AT1

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>AT1</th>
</tr>
</thead>
</table>
| Source de donnée: | Témoignage
Mr LUMINET |
| Adresse: | Berge rive droite jardin du n°6 Place du Champ de Foire |
| Date de l'événement: | 2006 |
| Repère: | Sommet de la berge en rive droite du jardin, pierre du seuil de la clôture |
| Commune / Lieu-dit: | Arc-sur-Tille |
| Cours d'eau: | La Tille |
| Coordonnées: | X= 865607.11
Y= 6696308.14 |
| Cote: | 219.96 |
| Précision: | Témoignage direct |

Commentaire:

Plan de situation

Photo
FICHE DE REPÈRE DE CRUE – AT2

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>AT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cours d'eau:</td>
<td>Tille</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Arc-sur-Tille</td>
</tr>
<tr>
<td>Source de donnée:</td>
<td>Témoignage</td>
</tr>
<tr>
<td>Mr BOITEUX</td>
<td></td>
</tr>
<tr>
<td>Adresse:</td>
<td>26 rue du Boulavesin</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 864759.91</td>
</tr>
<tr>
<td></td>
<td>Y= 6696700.33</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>2006</td>
</tr>
<tr>
<td>Cote:</td>
<td>219.04</td>
</tr>
<tr>
<td>Repère:</td>
<td>Seuil du portail d'entrée</td>
</tr>
<tr>
<td>Précision:</td>
<td>Témoignage direct</td>
</tr>
</tbody>
</table>

Commentaire:

Plan de situation

Photo
FICHE DE REPÈRE DE CRUE – AT3

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>AT3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cours d'eau:</td>
<td>Tille</td>
</tr>
<tr>
<td>Source de donnée:</td>
<td>Témoignage</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Arc-sur-Tille</td>
</tr>
<tr>
<td>Mr DUPAQUIER</td>
<td></td>
</tr>
<tr>
<td>Adresse:</td>
<td>88 route Nationale</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 864721.6</td>
</tr>
<tr>
<td></td>
<td>Y= 6696537.40</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>1993</td>
</tr>
<tr>
<td>Cote:</td>
<td>219</td>
</tr>
<tr>
<td>Repère:</td>
<td>70 cm au-dessus du sol du garage qui est en rez de jardin</td>
</tr>
<tr>
<td>Précision:</td>
<td>Témoignage direct</td>
</tr>
</tbody>
</table>

Commentaire:

Plan de situation

Photo
FICHE DE REPERE DE CRUE – AT4

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>AT4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de donnée:</td>
<td>Témoignage</td>
</tr>
<tr>
<td></td>
<td>Mr & Mme LALY</td>
</tr>
<tr>
<td>Adresse:</td>
<td>5 Allée de la Guillotière</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 864758.92</td>
</tr>
<tr>
<td></td>
<td>Y= 6696364.75</td>
</tr>
<tr>
<td>Date de l'évènement:</td>
<td>1993</td>
</tr>
<tr>
<td>Cote:</td>
<td>218.60</td>
</tr>
<tr>
<td>Repère:</td>
<td>Arase de la 2ème marche de l'escalier du garage et est en rez de jardin</td>
</tr>
<tr>
<td>Précision:</td>
<td>Témoignage direct</td>
</tr>
<tr>
<td>Commentaire:</td>
<td></td>
</tr>
</tbody>
</table>

Plan de situation Photo
FICHE DE REPÈRE DE CRUE – AT5

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>AT5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cours d'eau:</td>
<td>Tille</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Arc-sur-Tille</td>
</tr>
<tr>
<td>Source de donnée:</td>
<td>Témoignage</td>
</tr>
<tr>
<td>Mr MAZOYER</td>
<td></td>
</tr>
<tr>
<td>Adresse:</td>
<td>Les Prés aux Loups</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 864377.64 Y= 6695252.81</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>1993</td>
</tr>
<tr>
<td>Repère:</td>
<td>65 cm dans le garage en rez de jardin</td>
</tr>
<tr>
<td>Cote:</td>
<td>216.63</td>
</tr>
<tr>
<td>Précision:</td>
<td>Témoignage direct</td>
</tr>
</tbody>
</table>

Commentaire:

Plan de situation

Photo
FICHE DE REPÈRE DE CRUE – IT2

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>IT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de donnée:</td>
<td>Témoignage</td>
</tr>
<tr>
<td>Mr POTEY</td>
<td></td>
</tr>
<tr>
<td>Adresse:</td>
<td>10 rue Poinsot</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>858901.60</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Is-sur-Tille</td>
</tr>
<tr>
<td>Date de l'évènement:</td>
<td>1955</td>
</tr>
<tr>
<td>Repère:</td>
<td>Arase le seuil du garage</td>
</tr>
<tr>
<td>Cote:</td>
<td>275.34</td>
</tr>
<tr>
<td>Précision:</td>
<td>Témoignage direct</td>
</tr>
</tbody>
</table>

Plan de situation

Photo
Fiche de Repère de Crue – IT3

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>IT3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cours d'eau:</td>
<td>L'éignon</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Is-sur-Tille</td>
</tr>
<tr>
<td>Source de donnée:</td>
<td>Témoignage</td>
</tr>
<tr>
<td>Adresse:</td>
<td>14 rue Poinsot</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 858929.83</td>
</tr>
<tr>
<td></td>
<td>Y= 6715911.99</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>1910</td>
</tr>
<tr>
<td>Repère:</td>
<td>Eau au-dessus de l'appui de fenêtre de la fenêtre du rez de chaussé</td>
</tr>
<tr>
<td>Précision:</td>
<td>Témoignage direct</td>
</tr>
<tr>
<td>Commentaire:</td>
<td>Marque dans le mur qui a été effacé après ravalement de la façade de la maison de Mr CORTELLA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plan de situation</th>
<th>Photo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FICHE DE REPERE DE CRUE – IT4

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>IT4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cours d'eau:</td>
<td>L'Ignon</td>
</tr>
<tr>
<td>Source de donnée:</td>
<td>Témoignage</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Is-sur-Tille</td>
</tr>
<tr>
<td>Adresse:</td>
<td>7 rue Poinsot</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 858906.12</td>
</tr>
<tr>
<td></td>
<td>Y= 6715909.25</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>2006</td>
</tr>
<tr>
<td>Cote:</td>
<td>275.37</td>
</tr>
<tr>
<td>Repère:</td>
<td>10 cm au-dessus de la route</td>
</tr>
<tr>
<td>Précision:</td>
<td>Témoignage direct</td>
</tr>
</tbody>
</table>

Commentaire:

Plan de situation

Photo
FICHE DE REPÈRE DE CRUE – IT5

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>IT5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de donnée:</td>
<td>DDT21</td>
</tr>
<tr>
<td>Cours d'eau:</td>
<td>L'ignon</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Is-sur-Tille</td>
</tr>
<tr>
<td>Adresse:</td>
<td>Mur bâtiment des Services techniques de la ville en rive droite, côté Ignon</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 859199.69</td>
</tr>
<tr>
<td></td>
<td>Y= 6715836.42</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>1955</td>
</tr>
<tr>
<td>Cote:</td>
<td>274.96</td>
</tr>
<tr>
<td>Repère:</td>
<td>Butée métallique dans le mur à droite des escaliers</td>
</tr>
<tr>
<td>Précision:</td>
<td>Repère imprécis</td>
</tr>
<tr>
<td>Commentaire:</td>
<td>Personne ne sait situer exactement la laisse de crue de 1955</td>
</tr>
</tbody>
</table>

Plan de situation

![Plan de situation](image1.png)

Photo

![Photo](image2.png)
FICHE DE REPERE DE CRUE – IT6

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>IT6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cours d'eau:</td>
<td>L'Ignon</td>
</tr>
<tr>
<td>Source de donnée:</td>
<td>DDT21</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Is-sur-Tille</td>
</tr>
<tr>
<td>Adresse:</td>
<td>Rive droite de l'Ignon, le long de la</td>
</tr>
<tr>
<td></td>
<td>rue Joseph CAVIN, face aux n°2 et 4</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 858742.83</td>
</tr>
<tr>
<td></td>
<td>Y= 6715983.69</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>1955</td>
</tr>
<tr>
<td>Cote:</td>
<td>276.95</td>
</tr>
<tr>
<td>Repère:</td>
<td>Butée métallique dans le mur à gauche</td>
</tr>
<tr>
<td></td>
<td>des escaliers qui descendent dans l'Ignon</td>
</tr>
<tr>
<td>Précision:</td>
<td>Repère précis</td>
</tr>
<tr>
<td>Commentaire:</td>
<td>Repère précis car concordance des témoins</td>
</tr>
</tbody>
</table>

Plan de situation

Photo
FICHE DE REPÈRE DE CRUE – IT7

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>IT7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de donnée:</td>
<td>DDT21</td>
</tr>
<tr>
<td>Cours d'eau:</td>
<td>L'Ignon</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Is-sur-Tille</td>
</tr>
<tr>
<td>Adresse:</td>
<td>Escalier d'accès de la passerelle du vannage sur l'Ignon, entre la piscine et l'hôpital d'Is-sur-Tille</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 858381.04</td>
</tr>
<tr>
<td></td>
<td>Y= 6715346.32</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>1955</td>
</tr>
<tr>
<td>Cote:</td>
<td>278.37</td>
</tr>
<tr>
<td>Repère:</td>
<td>Butée métallique fixée dans le mur de l'escalier</td>
</tr>
<tr>
<td>Précision:</td>
<td>Repère imprécis</td>
</tr>
</tbody>
</table>

Commentaire:

Personne ne sait situer exactement la laisse de crue de 1955

Plan de situation

![Plan de situation](image1)

Photo

![Photo](image2)
FICHE DE REPÈRE DE CRUE – AT10

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>AT10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cours d’eau:</td>
<td>Gourmerault</td>
</tr>
<tr>
<td>Source de donnée:</td>
<td>Témoignage hydratec (WOM)</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Arc-sur-Tille</td>
</tr>
<tr>
<td>Adresse:</td>
<td>Passerelle du Gourmerault</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 1864623, Y= 6240795</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>Mai 2013</td>
</tr>
<tr>
<td>Cote:</td>
<td>218.24</td>
</tr>
<tr>
<td>Repère:</td>
<td>25 cm sur le muret de la première maison rive gauche en aval de la passerelle du Gourmerault (voir bas repère vert)</td>
</tr>
<tr>
<td>Précision:</td>
<td>Photo du 6 mai 2013 à 12h35</td>
</tr>
<tr>
<td>Commentaire:</td>
<td></td>
</tr>
</tbody>
</table>

Plan de situation

Photo
FICHE DE REPÈRE DE CRUE — IT6

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>IT6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cours d'eau:</td>
<td>L'Ignon</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Is-sur-Tille</td>
</tr>
<tr>
<td>Source de donnée:</td>
<td>Témoignage direct Mr MAILLOT</td>
</tr>
<tr>
<td>Adresse:</td>
<td>Rive droite de l'Ignon, le long de la rue Joseph CAVIN, face aux n°2 et 4</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 1859078 Y= 6260436</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>Mai 2013</td>
</tr>
<tr>
<td>Cote:</td>
<td>275.34</td>
</tr>
<tr>
<td>Repère:</td>
<td>5 cm sous le haut du muret Ou barre du « 4 » du repère de 1855 rive gauche aval passerelle Truchebeuf</td>
</tr>
<tr>
<td>Précision:</td>
<td>Repère précis Photo</td>
</tr>
</tbody>
</table>

Commentaire:

Plan de situation

![Plan de situation](image1)

Photo

![Photo](image2)
FICHE DE REPERE DE CRUE – IZ1

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>IZ1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cours d'eau:</td>
<td>Le Gourmerault</td>
</tr>
<tr>
<td>Source de donnée:</td>
<td>Témoignage Mr PINET (SiTNA)</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Izier-sur-Tille</td>
</tr>
<tr>
<td>Adresse:</td>
<td>1 Ruelle du retard (1ère maison rive gauche en amont du pont sur le Gourmerault)</td>
</tr>
</tbody>
</table>
| Coordonnées: | X= 1865599
Y= 6233473 |
| Date de l'événement: | Mai 2013 |
| Repère: | 35 cm au-dessus du sol |
| Cote: | 205.31 |
| Précision: | Témoignage direct |
| Commentaire: | L'eau n'est pas rentrée dans la maison (2cm sous la dernière marche) |

<table>
<thead>
<tr>
<th>Plan de situation</th>
<th>Photo</th>
</tr>
</thead>
</table>

[Plan de situation]

[Photo]
FICHE DE REPERE DE CRUE – IZ3

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>IZ3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cours d’eau:</td>
<td>Le Gourmerault</td>
</tr>
<tr>
<td>Source de donnée:</td>
<td>Témoignage hydratec WOM</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Izier-sur-Tille</td>
</tr>
<tr>
<td>Adresse:</td>
<td>1ère maison rive droite en aval du pont sur le Gourmerault</td>
</tr>
</tbody>
</table>
| Coordonnées: | X= 1865580
Y= 6233428 |
| Date de l’évènement: | Mai 2013 |
| Cote: | 204.99 |
| Repère: | Terrasse en pierre devant la maison |
| Précision: | Photo du 6 mai 2013 à 9h32 |
| Commentaire: | L’eau n’est pas rentrée dans la maison, mais affleure la terrasse |

Plan de situation

Photo
FICHE DE REPÈRE DE CRUE – IZ4

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>IZ4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cours d'eau:</td>
<td>Le Gourmerault</td>
</tr>
<tr>
<td>Source de donnée:</td>
<td>Témoinage hydratec WOM</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Izier-sur-Tille</td>
</tr>
<tr>
<td>Adresse:</td>
<td>5 rue du Clair Bois</td>
</tr>
</tbody>
</table>
| Coordonnées: | X= 1865539
 | Y= 6233535 |
| Date de l'événement: | Mai 2013 |
| Cote: | 205.15 |
| Repère: | Entre la première et la deuxième marche |
| Précision: | Photo du 6 mai 2013 à 9h40 |
| Commentaire: | L'eau n'est pas rentrée dans la maison, mais dans le garage |

Plan de situation

![Plan de situation](image1.png)

Photo

![Photo](image2.png)
<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>IT8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de donnée:</td>
<td>Témoignage habitant</td>
</tr>
<tr>
<td>Adresse:</td>
<td>Moulin route de Diénay</td>
</tr>
<tr>
<td>Date de l'évènement:</td>
<td>Mai 2013</td>
</tr>
<tr>
<td>Repère:</td>
<td>Mur de la 1ère maison en face du portail, trace à 60 cm du sol</td>
</tr>
<tr>
<td>Cours d'eau:</td>
<td>Ignon</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Is-sur-Tille</td>
</tr>
</tbody>
</table>
| **Coordonnées:** | X = 1857973
Y = 6259471 |
| **Cote:** | 280.34 |
| **Précision:** | Témoignage direct, marque encore visible |
| **Commentaire:** | |

Plan de situation

Photo

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>IT9</th>
<th>Cours d'eau:</th>
<th>Ignon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de donnée:</td>
<td>Témoignage direct</td>
<td>Commune / Lieu-dit:</td>
<td>Is-sur-Tille</td>
</tr>
<tr>
<td>Adresse:</td>
<td>8 bis rue Marie Estivalet</td>
<td>Coordonnées:</td>
<td>X= 1858721</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y= 6260450</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>Mai 2013</td>
<td>Cote:</td>
<td>277.14</td>
</tr>
<tr>
<td>Repère:</td>
<td>1 m au-dessus du sol</td>
<td>Précision:</td>
<td></td>
</tr>
<tr>
<td>Commentaire:</td>
<td>mur côté rond-point</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plan de situation

Photo
FICHE DE REPÈRE DE CRUÉ – IT10

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>IT10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de donnée:</td>
<td>Témoignage direct</td>
</tr>
<tr>
<td>Cours d'eau:</td>
<td>Ignon</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Is-sur-Tille</td>
</tr>
<tr>
<td>Adresse:</td>
<td>16 rue Poinsot</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 1859067</td>
</tr>
<tr>
<td></td>
<td>Y= 6260446</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>Mai 2013</td>
</tr>
<tr>
<td>Cote:</td>
<td>275.31</td>
</tr>
<tr>
<td>Repère:</td>
<td>26 cm au-dessus du sol dans le garage</td>
</tr>
<tr>
<td>Précision:</td>
<td>Témoignage direct</td>
</tr>
</tbody>
</table>

Commentaire:

Plan de situation

Photo
<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>IT11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cours d'eau:</td>
<td>Ignon</td>
</tr>
<tr>
<td>Source de donnée:</td>
<td>Témoignage direct</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Is-sur-Tille</td>
</tr>
<tr>
<td>Adresse:</td>
<td>1 rue du Prêche</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 1858920</td>
</tr>
<tr>
<td></td>
<td>Y= 6260449</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>Mai 2013</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>275.70</td>
</tr>
<tr>
<td>Repère:</td>
<td>26 cm dans la pièce côté rue</td>
</tr>
<tr>
<td>Précision:</td>
<td>Témoignage direct + photo</td>
</tr>
</tbody>
</table>

Commentaire:

Plan de situation

Photo
FTICHE DE REPÈRE DE CRUE – BT3

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>BT3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de donnée:</td>
<td>Témoignage direct</td>
</tr>
<tr>
<td>Cours d'eau:</td>
<td>Gourmerault</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Bressey-sur-Tille</td>
</tr>
<tr>
<td>Adresse:</td>
<td>19 Route de Dijon</td>
</tr>
</tbody>
</table>
| Coordonnées: | X= 1864685
 | Y= 6236518 |
| Date de l'événement: | Mai 2013 |
| Cote: | 211.04 |
| Repère: | 55 cm dans sous-sol |
| Précision: | Témoignage direct mais pas de photo |

Commentaire:

Plan de situation

Photo
FICHE DE REPERE DE CRUE – IZ5

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>IZ5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de donnée:</td>
<td>Témoignage direct</td>
</tr>
<tr>
<td>Cours d'eau:</td>
<td>Gourmerault</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Izier</td>
</tr>
<tr>
<td>Adresse:</td>
<td>21 rue du Clair Bois</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 1865495</td>
</tr>
<tr>
<td></td>
<td>Y= 6233706</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>Mai 2013</td>
</tr>
<tr>
<td>Cote:</td>
<td>205.73</td>
</tr>
<tr>
<td>Repère:</td>
<td>L'eau affleure le haut du banc, 40 cm au-dessus du sol</td>
</tr>
<tr>
<td>Précision:</td>
<td>Témoignage direct, marque sur mur encore visible</td>
</tr>
</tbody>
</table>

Plan de situation

![Plan de situation](image1.png)

Photo

![Photo](image2.png)
FICHE DE REPÈRE DE CRUE – IZ2

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>IZ2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cours d'eau:</td>
<td>Le Gourmerault</td>
</tr>
<tr>
<td>Source de donnée:</td>
<td>Photo de riverains</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Izier</td>
</tr>
<tr>
<td>Adresse:</td>
<td>Passerelle sur le Gourmerault, Croisement rue de la Charme, rue du Clair Bois</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X = 1865508, Y = 6233744</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>Mai 2013</td>
</tr>
<tr>
<td>Repère:</td>
<td>5 cm au dessus de la passerelle</td>
</tr>
<tr>
<td>Cote:</td>
<td>205.6</td>
</tr>
<tr>
<td>Prévision:</td>
<td></td>
</tr>
</tbody>
</table>

Commentaire:

Plan de situation

Photo
FICHE DE REPÈRE DE CRUE – BT2

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>BT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cours d'eau:</td>
<td>Le Gourmerault</td>
</tr>
<tr>
<td>Source de donnée:</td>
<td>Témoignage hydratec WOM</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Bressey-sur-Tille</td>
</tr>
<tr>
<td>Adresse:</td>
<td>Pont de la RD 107 sur le Gourmerault</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 1864614</td>
</tr>
<tr>
<td></td>
<td>Y= 6236551</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>Mai 2013</td>
</tr>
<tr>
<td>Repère:</td>
<td>Eau affleure les berges en rive droite aval, 10 cm sous le tablier du pont</td>
</tr>
<tr>
<td>Cote:</td>
<td>211.08</td>
</tr>
<tr>
<td>Précision:</td>
<td></td>
</tr>
</tbody>
</table>

Commentaire:

Plan de situation

Photo
2 ANNEXE 2 : ANALYSE HYDROLOGIQUE : AJUSTEMENTS STATISTIQUES

2.1 MéTHODOLOGIE DE DÉTERMINATION DES DÉBITS DE CRUE

2.1.1 Calcul du débit décennal

Ajustement de Gumbel

Pour les stations qui disposent de suffisamment d'années de mesure, le débit décennal peut être estimé à partir de l'analyse statistique des débits.

L'analyse statistique repose sur l'ajustement à une loi de type Gumbel des débits maximum annuels. L'ajustement de Gumbel est défini selon la loi suivante :

\[
 Q(T) = a \times U + b
\]

avec :
- \(T\) : période de retour,
- \(Q(T)\) : débit pour une période de retour \(T\)
- \(\sigma_x\) : écart type des débits maximum instantanés
- \(\mu_x\) : moyenne des débits maximum instantanés
- \(f(K)\) et \(g(K)\) : coefficients de correction fonction du nombre de valeurs \(K\) de la série.

Les données de débits maximum annuels aux stations hydrométriques sont extraites de la banque HYDRO du ministère de l'Environnement.

Les résultats des ajustements réalisés pour les stations disposant de suffisamment de données sont présentés dans les paragraphes suivants.

Formule de Crupedix

Certains bassins ne disposent pas de stations de mesure pour pouvoir réaliser un ajustement de Gumbel tel que défini dans le paragraphe précédent. Les bassins concernés sont :
- le Crosne,
- l'Amison.

Pour ces stations, le débit décennal peut être calculé à partir d'une loi surface-débit. Cette loi s'exprime couramment sous la forme :

\[
 Q = a \cdot S^b
\]
Avec :

- S : surface du bassin versant
- a et b : coefficients établis à partir de l'analyse des débits statistiques des stations disposant de suffisamment de mesures dans la région proche.

Les coefficients a et b ont été établis à partir des stations hydrométriques de la zone d'étude dont la surface du bassin versant était cohérente avec les surfaces des bassins versants ne disposant pas de données.

Les coefficients obtenus sont :

\[
\begin{align*}
a &= 0.55 \\
b &= 0.8
\end{align*}
\]

La loi surface débit s'écrit alors :

\[
Q = 0.55 \times S^{0.8}
\]

2.1.2 Calcul des débits de pointe supérieurs à décennaux

Au-delà d'une certaine période de retour, et compte tenu que les chroniques de débits mesurés ne constituent généralement pas un échantillon suffisamment long de mesure, il s'avère difficile d'utiliser les lois statistiques sur les débits mesurés pour les crues rares à exceptionnelles. La méthode d'ajustement de Gumbel telle que présentée dans le paragraphe précédent n'est donc plus applicable.

La méthode du gradex progressif et du rapport au débit décennal ont été utilisées pour déterminer les débits de pointe des crues rares. Ces 2 méthodes sont décrites dans les paragraphes suivants.

Méthode du gradex progressif (Michel – 1982)

La méthode du gradex progressif, développée par le CEMAGREF s'inspire de la méthode du gradex. Elle traduit cependant une évolution peut-être plus proche de la réalité physique des phénomènes en supposant qu'il n'y a pas de refus total de l'infiltration dès la fréquence de débit décennal (période de retour pivot) mais plutôt une augmentation progressive du coefficient de ruissellement à partir de ce point.

La formulation permettant de traduire cette augmentation progressive est la suivante ; elle introduit le rapport des gradex de la pluie et du débit :

\[
Q(T) = Q(T_{\text{pivot}}) + C_{PD} \times \frac{G_{PD} \times S}{D \times 86.4} \times \ln \left(1 + \frac{G_{Q}}{C_{PD} \times \frac{G_{PD} \times S}{D \times 86.4}} \times \frac{T - T_{\text{pivot}}}{T_{\text{pivot}}}
ight)
\]
Avec :
- \(Q(T) \) = débit instantané de période de retour \(T \) (m\(^3\)/s)
- \(T_{\text{pivot}} \) = temps de retour du point pivot (ans), pris ici à 10 ans sur les deux stations
- \(C_{PD} \) = coefficient de pointe du débit des crues pour une durée \(D \)
- \(G_{PD} \) = gradex des pluies de durée \(D \) (mm)
- \(S = \text{surface du bassin versant (km}\,^2\)\)
- \(D = \text{durée des crues (jours)} \)
- \(G_{Q} = \text{gradex des débits de pointe (m}\,^3\text{/s)\)

2.2 Synthèse

Les débits calculés et les ajustements statistiques aux stations de la Tille et de la Norgues sont présentés dans les paragraphes suivants.

2.2.1 Débits de crue de la Tille à Crécy-sur-Tille

La station de Crécy sur Tille se situe en tête de bassin ; elle contrôle un bassin versant issu des plateaux calcaires au niveau du seuil de Bourgogne, d'où proviennent également l'ignon (affluent rive droite) et la Venelle (affluent rive gauche).

Sur cette station, on dispose de 42 ans de mesures. L'ajustement statistique des débits max. annuels sur un graphique de Gumbel montre une légère cassure dans la répartition des débits, vers \(T=2 \) ans, et on peut différencier deux îlots de répartition (pour \(T < 2 \) ans et \(2 < T < 10 \) ans).

Ce comportement se retrouve, en plus marqué, sur les bassins amont de l'ignon (station de Villecomte) et de la Venelle (station de Selongey), qui présentent une géologie similaire à celle de la Tille amont.

À titre de comparaison, deux ajustements statistiques ont été effectués, la méthode du gradex progressif étant ensuite appliquée à partir de \(T=10 \) ans : ajustement linéaire d'une part (droite de Gumbel), et prise en compte de la cassure d'autre part (deux ajustement linéaires). Les graphes correspondants, ainsi que les débits de pointe résultants sont présentés sur les figures et tableaux ci-après.
Figure 1 : La Tille à Crécey – Ajustement statistique droite de Gumbel + gradex progressif

Figure 2 : La Tille à Crécey – Ajustement statistique avec prise en compte de la cassure

Note de présentation – PPtI Tille et affluents

Juin 2015
<table>
<thead>
<tr>
<th>Q2</th>
<th>19.3 m³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q5</td>
<td>25.9 m³/s</td>
</tr>
<tr>
<td>Q10</td>
<td>30.3 m³/s</td>
</tr>
<tr>
<td>Q20</td>
<td>36.3 m³/s</td>
</tr>
<tr>
<td>Q30</td>
<td>40.9 m³/s</td>
</tr>
<tr>
<td>Q50</td>
<td>47.6 m³/s</td>
</tr>
<tr>
<td>Q100</td>
<td>58.1 m³/s</td>
</tr>
<tr>
<td>Q200</td>
<td>69.7 m³/s</td>
</tr>
<tr>
<td>Q500</td>
<td>85.9 m³/s</td>
</tr>
<tr>
<td>Q1000</td>
<td>98.6 m³/s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q2</th>
<th>21.5 m³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q5</td>
<td>26.5 m³/s</td>
</tr>
<tr>
<td>Q10</td>
<td>29.8 m³/s</td>
</tr>
<tr>
<td>Q20</td>
<td>33.8 m³/s</td>
</tr>
<tr>
<td>Q30</td>
<td>37.1 m³/s</td>
</tr>
<tr>
<td>Q50</td>
<td>42.3 m³/s</td>
</tr>
<tr>
<td>Q100</td>
<td>51.1 m³/s</td>
</tr>
<tr>
<td>Q200</td>
<td>61.7 m³/s</td>
</tr>
<tr>
<td>Q500</td>
<td>77.1 m³/s</td>
</tr>
<tr>
<td>Q1000</td>
<td>89.5 m³/s</td>
</tr>
</tbody>
</table>

Ajustement de Gumbel Cassure dans l’ajustement

Tableau 1 : Débits caractéristiques de crue sur la Tille à Crécey, avec les deux méthodes

En termes de débit de pointe, on obtient des écarts de 1.6 % sur Q10, et 12% sur Q100 entre les 2 méthodes, celle de l’ajustement de Gumbel donnant les résultats les plus élevés.

Au final, même si la cassure est peu marquée sur la Tille, la méthode d’ajustement prenant en compte cette cassure a été retenue, par similitude avec le comportement hydrologique observé sur les bassins de l’Ignon et de la Venelle (cf. plus loin).

2.2.2 Débits de crue de la Tille à Arceau

La station d’Arceau est située en aval d’un tronçon sur lequel des débordelements se produisent depuis la Tille vers la Norges. Les débits mesurés à Arceau ne prennent donc pas en compte la totalité du débit de pointe de la crue produite sur le bassin en amont.

L’ajustement statistique des max. annuels montre une cassure très nette dans la droite d’ajustement vers T=2 ans.

Pour l’estimation des débits de fréquence rare (T>100 ans), la méthode du gradex progressif a été appliquée.
2.2.3 Débits de crue de la Tille à Cessey-sur-Tille

La station de Cessey, située encore plus en aval sur la Tille, présente un comportement particulier en ce sens que les débits mesurés lors des crues sont en général plus faibles que ceux de la station d'Arceau en amont. Cette différence est due aux transferts de débits qui ont lieu entre la Tille et la Norges en amont, et notamment entre les stations d'Arceau et Cessey.

Sur cette station, compte tenu de ce phénomène particulier, deux ajustements linéaires ont été réalisés sur les débits, la cassure se situant entre 2 et 5 ans. La méthode du gradex progressif n'a pas été utilisée.
Figure 4 : La Tille à Cessey-sur-Tille – Ajustement statistique des débits
2.2.4 Synthèse des débits de pointe de la Tille

<table>
<thead>
<tr>
<th>La Tille à Crécy-sur-Tille</th>
<th>La Tille à Arceau [Arcelot]</th>
<th>La Tille à Cessey-sur-Tille</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2</td>
<td>21.5 m³/s</td>
<td>Q2</td>
</tr>
<tr>
<td>Q5</td>
<td>26.5 m³/s</td>
<td>Q5</td>
</tr>
<tr>
<td>Q10</td>
<td>29.8 m³/s</td>
<td>Q10</td>
</tr>
<tr>
<td>Q20</td>
<td>33.8 m³/s</td>
<td>Q20</td>
</tr>
<tr>
<td>Q30</td>
<td>37.1 m³/s</td>
<td>Q30</td>
</tr>
<tr>
<td>Q50</td>
<td>42.3 m³/s</td>
<td>Q50</td>
</tr>
<tr>
<td>Q100</td>
<td>51.1 m³/s</td>
<td>Q100</td>
</tr>
<tr>
<td>Q200</td>
<td>61.7 m³/s</td>
<td>Q200</td>
</tr>
<tr>
<td>Q500</td>
<td>77.1 m³/s</td>
<td>Q500</td>
</tr>
<tr>
<td>Q1000</td>
<td>89.5 m³/s</td>
<td>Q1000</td>
</tr>
</tbody>
</table>

Tableau 2 : Débits caractéristiques de crue sur la Tille

2.2.5 Débits de crue de l'Ignon

Sur l'Ignon, deux stations hydrométriques sont explotables :

- L'Ignon à Diénay : BV=310 km² ; période de mesures : 1973-1986 (13 ans)
- L'Ignon à Villecomte : BV=304 km² ; période de mesures : 1987-2013 (26 ans)

La station de Villecomte a été mise en service après l'arrêt de celle de Diénay. Les deux stations contrôlant quasiment le même bassin versant, la chronique continue des débits enregistrés aux deux stations, sur la période 1973-2013, a été utilisée.

On retrouve sur l'Ignon de façon marquée la cassure dans l'ajustement linéaire des débits de pointe, pour une période de retour comprise entre 2 et 5 ans.

La méthodologie retenue pour l'estimation des débits de référence est donc :

- Pour T< 10 ans : double ajustement linéaire des débits (cassure entre 2 et 5 ans)
- A partir de T=10 ans : application du gradex progressif.
Figure 5 : L'Ignon à Villecomte et Diénay – Ajustement statistique des débits

<table>
<thead>
<tr>
<th>L'Ignon à Villecomte+Diénay</th>
<th>Crues récentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2 35.2 m³/s</td>
<td>Date</td>
</tr>
<tr>
<td>Q5 43.2 m³/s</td>
<td>2001</td>
</tr>
<tr>
<td>Q10 45.5 m³/s</td>
<td>2006</td>
</tr>
<tr>
<td>Q20 48.3 m³/s</td>
<td>2013</td>
</tr>
<tr>
<td>Q30 50.9 m³/s</td>
<td></td>
</tr>
<tr>
<td>Q50 55.3 m³/s</td>
<td></td>
</tr>
<tr>
<td>Q100 63.7 m³/s</td>
<td></td>
</tr>
<tr>
<td>Q200 74.9 m³/s</td>
<td></td>
</tr>
<tr>
<td>Q500 92.8 m³/s</td>
<td></td>
</tr>
<tr>
<td>Q1000 107.9 m³/s</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 3 : Débits caractéristiques de crue sur l'Ignon (Villecomte+Diénay)
2.2.6 Débits de crue de la Norges

Deux stations hydrométriques sont exploitées :
- La Norges à Saint Julien : BV=109 km² ; période de mesures : 2003-2013
- La Norges à Genlis : BV=286 km² ; période de mesures : 1984-2013

La station de Saint Julien sur la Norges ne dispose que de 11 années de mesures, ce qui est peu pour estimer des débits de période de retour centennale ou plus. A noter que l'ajustement statistique des débits de pointe à Saint Julien ne semble pas présenter de cassure comme les autres bassins versants amont (Tilse amont, Ignon, Venelle).

La station de Genlis située plus en aval sur la Norges ne peut pas être utilisée en complément pour générer une chronique de débit plus longue, car la Norges récupère une partie des débits de la Tilse, issus des débordements qui se produisent dès Fouchanges sur la Tilse.

La méthodologie du gradex progressif a donc été appliquée aux stations de Saint Julien, et de Genlis, à partir de l'ajustement de Gumbel.
La Norges à Saint-Julien (2003-2013)

Débits mesurés
Ajustement Gumbel
IC 70%
IC 95%
Gradex progressif

Variable de Gumbel

Débit max. (m³/s)

Figure 6 : La Norges à Saint Julien – Ajustement statistique des débits

La Norges à Genlis (1964-2013)

Débits mesurés
Ajustement Gumbel
IC 70%
IC 95%
Gradex progressif

Variable de Gumbel

Débit max. (m³/s)

Figure 7 : La Norges à Genlis – Ajustement statistique des débits

Note de présentation – PPRI Tille et affluents
Juin 2015
<table>
<thead>
<tr>
<th></th>
<th>La Norges à Saint-Julien</th>
<th></th>
<th>La Norges à Genlis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2</td>
<td>6.2 m³/s</td>
<td>Q2</td>
<td>20.2 m³/s</td>
</tr>
<tr>
<td>Q5</td>
<td>8.7 m³/s</td>
<td>Q5</td>
<td>32.5 m³/s</td>
</tr>
<tr>
<td>Q10</td>
<td>10.3 m³/s</td>
<td>Q10</td>
<td>40.6 m³/s</td>
</tr>
<tr>
<td>Q20</td>
<td>12.3 m³/s</td>
<td>Q20</td>
<td>50.2 m³/s</td>
</tr>
<tr>
<td>Q30</td>
<td>14.0 m³/s</td>
<td>Q30</td>
<td>58.0 m³/s</td>
</tr>
<tr>
<td>Q50</td>
<td>17.0 m³/s</td>
<td>Q50</td>
<td>70.1 m³/s</td>
</tr>
<tr>
<td>Q100</td>
<td>22.4 m³/s</td>
<td>Q100</td>
<td>90.4 m³/s</td>
</tr>
<tr>
<td>Q200</td>
<td>29.3 m³/s</td>
<td>Q200</td>
<td>113.9 m³/s</td>
</tr>
<tr>
<td>Q500</td>
<td>40.0 m³/s</td>
<td>Q500</td>
<td>148.1 m³/s</td>
</tr>
<tr>
<td>Q1000</td>
<td>48.9 m³/s</td>
<td>Q1000</td>
<td>175.2 m³/s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Crues récentes - St Julien</th>
<th></th>
<th>Crues récentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Q (m³/s)</td>
<td>T (ans)</td>
<td>Date</td>
</tr>
<tr>
<td>2001</td>
<td>-</td>
<td>-</td>
<td>2001</td>
</tr>
<tr>
<td>2006</td>
<td>7.93</td>
<td>4</td>
<td>2006</td>
</tr>
<tr>
<td>2013</td>
<td>11.80</td>
<td>17</td>
<td>2013</td>
</tr>
</tbody>
</table>

Tableau 4 : Débits caractéristiques de crue sur la Norges

2.2.7 Débits de crue de la Venelle

La Venelle est un affluent rive droite de la Tille ; à la station de Selongey, on dispose d’une chronique de 43 années de mesures.

Comme pour la Tille et l’Ignon, l’ajustement des débits de pointe sur un graphique de Gumbel présente une cassure vers T=2 ans. Pour les débits faibles (T<10ans), deux ajustements linéaires ont donc été réalisés ; pour les débits plus élevés, le gradeX progressif est appliqué.
La Venelle à Selongey (1971-2013)

Figure 8 : La venelle à Selongey – Ajustement statistique des débits

<table>
<thead>
<tr>
<th>La Venelle à Selongey</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2</td>
<td>6.3 m³/s</td>
</tr>
<tr>
<td>Q5</td>
<td>7.6 m³/s</td>
</tr>
<tr>
<td>Q10</td>
<td>8.4 m³/s</td>
</tr>
<tr>
<td>Q20</td>
<td>9.5 m³/s</td>
</tr>
<tr>
<td>Q30</td>
<td>10.3 m³/s</td>
</tr>
<tr>
<td>Q50</td>
<td>11.6 m³/s</td>
</tr>
<tr>
<td>Q100</td>
<td>13.8 m³/s</td>
</tr>
<tr>
<td>Q200</td>
<td>16.4 m³/s</td>
</tr>
<tr>
<td>Q500</td>
<td>20.2 m³/s</td>
</tr>
<tr>
<td>Q1000</td>
<td>23.2 m³/s</td>
</tr>
</tbody>
</table>

Tableau 5 : Débits caractéristiques de crue sur la Venelle (Selongey)

<table>
<thead>
<tr>
<th>Crues récentes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Q (m³/s)</td>
</tr>
<tr>
<td>2001</td>
<td>7.88</td>
</tr>
<tr>
<td>2006</td>
<td>9.47</td>
</tr>
<tr>
<td>2013</td>
<td>12.80</td>
</tr>
</tbody>
</table>

Note de présentation – PPRI Tille et affluents

Juin 2015
2.3 CONSTRUCTION DES HYDROGRAMES DE REFERENCE AUX STATIONS

Pour la construction des hydrogrammes de crue de référence, on utilise la formulation ci-après, éditée par le Cemagref :

\[Q(t) = Q_p \times \left[\frac{2 \times (t/D)\alpha}{1 + (t/D)\alpha} \right] \]

- \(Q_p \) : débit de pointe de la crue (m³/s)
- \(D \) : durée caractéristique de la crue
- \(\alpha \) : paramètre de forme à ajuster (volume de la crue)

A chaque station hydrométrique, le paramètre de forme \(\alpha \) a été calé par rapport aux hydrogrammes de crues enregistrés (crue de 2013, avec validation sur les crues de 2006 et 2001).

A titre d'exemple, les graphes ci-après présentent, à la station de Crecey-sur-Tille, le calage du paramètre \(\alpha \) sur la crue de 2013, ainsi que les hydrogrammes de crue de référence résultant.

L'ensemble des hydrogrammes de calage, ainsi que les hydrogrammes synthétiques ainsi générés sont reportés en annexe.
Figure 9 : Calage du paramètre de forme α – Station de Crecey-sur-Tille

Figure 10 : Hydrogrammes synthétiques – Station de Crecey-sur-Tille
2.4 Débits d’entrée du modèle

2.4.1 Ignon, Tille et Norges amont

Les apports de la Tille et de l'Ignon en amont du modèle (soit en amont de la commune d'Is sur Tille) sont obtenus par homothétie des hydrogrammes définis aux stations de Crécey sur Tille et Villecomte ; la formule homothétique retenue est la suivante :

\[Q = \left(\frac{S_{buv}}{S_{station}} \right)^{0.6} \]

Les résultats du modèle pour les différentes occurrences de crues donnent un bon calage des hydrogrammes.

La Norges est jaugée à Saint Julien; cette station étant située en aval de la confluence avec le Flacey, les hydrogrammes sont répartis par homothétie sur ces deux affluents en amont de la commune de Saint Julien (point amont de la modélisation hydraulique).

2.4.2 Reconstitution des apports intermédiaires entre stations

La partie précédente a permis de définir les débits de pointes et les hydrogrammes de projet aux différentes stations.

Les débits le long du cours d'eau évoluent en réalité en fonction des apports des sous bassins versants présents entre ces stations et il est nécessaire, pour la modélisation hydraulique, de reconstituer ces apports intermédiaires.

La Figure 11 présente les stations hydrométriques ainsi que le découpage en sous bassins versants retenu entre ces stations pour définir les apports intermédiaires de la Tille, la Norges et leurs affluents.

Deux méthodologies ont été appliquées pour définir les hydrogrammes des sous bassins versants intermédiaires :

- Bassins versants pouvant être assimilés à un bassin versant jaugé, du fait de ses caractéristiques physiques et morphologiques : les apports sont définis par homothétie des hydrogrammes définis aux stations considérées :
 - La Venelle, principal affluent rive gauche de la Tille : la Venelle à Selongey,
 - Affluent rive droite de l'Ignon et de la Tille : la Venelle à Selongey.
- Autres bassins versants : modélisation pluie – débit ; il s'agit notamment des bassins versants des affluents aval de la Norges et de la Tille, constitués de terrains plutôt imperméables.
Figure 11 : définition des apports des sous bassins versants

2.4.3 Modélisation pluie – débit

Ce chapitre traite des apports intermédiaires pouvant ruisseler sur les zones urbaines pendant la crue, notamment en amont de Chevigny Saint Sauveur et sur les terrains imperméables des petits bassins versants affluents de la Tille et de la Norges en aval du territoire d’étude, et gonfler le niveau des crues formées en amont.

L’estimation des débits issus de ces affluents se base sur un découpage en sous bassins versants et un modèle hydrologique de transformation pluie – débit, dont les paramètres ont été validés sur

Note de présentation – PPRI Tille et affluents

Juin 2015

45

a) Découpage en bassins versants

Le découpage réalisé est présenté sur la Figure 11 du chapitre 2.4.2. Il couvre l'espace situé entre les stations amont et celle de Crimolais.

Trois coefficients de ruissellement moyen ont été retenus en fonction du type d'urbanisation ; ils ont été ajustés en fonction des informations données par les orages de 2008 :

- Bassin versant de densité d'urbanisation faible,
- Bassin versant de densité d'urbanisation moyenne,
- Bassin versant de densité d'urbanisation forte, correspondant exclusivement à l'hyper centre dijonnais.

Les simulations hydrologiques sur ces bassins versants ont été réalisées à l'aide du logiciel « HYDRARIV », également utilisé pour la modélisation hydraulique.

HYDRARIV dispose d'un module hydrologique assurant la production des pluies nettes (qui correspondent aux pluies ruisselées, à la différence des pluies brutes qui sont celles enregistrées par les pluviographes) et la transformation « pluie – débit » sur les bassins versants.

La fonction de production des pluies nettes choisies est celle du coefficient de ruissellement constant, dans laquelle la lame d'eau ruisselée est directement proportionnelle à l'intensité de la pluie brute.

La transformation « pluie – débit » caractérise le système donné par le hytogramme du bassin versant en entrée et son hydrogramme en sortie. La résolution de ce système est celle du réservoir linéaire : chaque bassin versant est vu comme un réservoir qui temporise l'arrivée des pluies pour en restituer du débit tout en conservant le volume.

Le temps de réponse des bassins versants est calculé à partir de la formule de Desbordes pour les bassins versants à dominante urbaine et à partir de la formule de Giandotti pour les bassins versants à dominante rurale.
ANNEXE 3 : MODELISATION HYDRAULIQUE

2.5 PRESENTATION

2.5.1 Généralités

Le modèle numérique de simulation des crues de la Tille s'appuie sur la connaissance topographique et bathymétrique de la Tille et de ses principaux affluents et du champ d'expansion de ses crues, complétée par une analyse détaillée des spécificités du terrain.

2.5.2 Crues modélisées

La crue historique de mai 2013 est modélisée ; elle permet de caler le modèle en termes de hauteurs d'eau calculées et d'emprise des zones inondables cartographiées.

La crue centennale définie par les analyses hydrologiques est ensuite modélisée afin de définir une cartographie de l'aléa centennal sur l'ensemble des communes.

2.5.3 Aire d'étude, emprise du modèle

La vallée de la Tille de ls-sur-Tille jusqu'à l'autoroute A39 a été modélisée par un unique modèle TIL.

Le modèle TIL a servi spécifiquement à la réalisation des études de PPRi des 8 communes de la Tille et de ses affluents. Il a été construit à partir de levés topographiques détaillées.

2.6 CONSTRUCTION DU MODELE HYDRAULIQUE

2.6.1 Le logiciel de simulation HYDRARIV

HYDRARIV est un logiciel de simulation des systèmes fluviaux, développé par Hydratec, pour répondre aux besoins très divers de modélisation hydraulique dans le domaine fluvial. C'est un outil de simulation complet, basé sur la résolution des équations de Barré de Saint Venant unidimensionnelles et bidimensionnelles. Ce logiciel comporte les particularités suivantes :

- il intègre 4 concepts de schématisation pouvant coexister au sein d'un même modèle : filaire, casier, bi dimensionnel et station de gestion,
- il offre un éventail étendu de fonctionnalités regroupées en 4 grands modules : hydrologie, hydraulique, advection-diffusion, contrôle et régulation,
- la résolution des équations de Barré de Saint Venant repose sur des algorithmes implicites, s'appuyant sur des techniques de sous structuration, ce qui confère à la fois une grande rapidité et une forte robustesse aux calculs,
HYDRARIV est pilotée par une interface graphique fondée sur les commandes API de Windows : les objets graphiques font appel à des notions intuitives et à des commandes familières aux utilisateurs des logiciels de bureautique et de dessin du monde Windows. Cet environnement confère à HYDRARIV un grand confort d'utilisation.

HYDRARIV dispose de nombreux modules d'import et d'export avec des outils SIG, pour certaines opérations de pré et post-traitement : cette disposition est particulièrement utile pour les modèles bidimensionnels dont le paramétrage repose généralement sur l'exploitation de semis de points et de modèles numériques de terrain.

HYDRARIV est articulé autour des blocs fonctionnels schématisés sur la figure ci-dessous.

Le logiciel HYDRARIV proprement dit comprend une interface de pilotage graphique et un moteur de calcul composé de la chaîne de simulation Hydra.

L'interface remplit les fonctions principales suivantes :

- importation de données externes générées par d'autres applicatifs tels que les SIG,
- génération, éditions des entités de modélisation,
- paramétrage des scénarios,
- pilotage et contrôle des calculs de simulation. Ces derniers sont réalisés en sous tâche par la chaîne de simulation Hydra et sont totalement transparents pour l'utilisation,
- exploitation des résultats hydrauliques à partir des fichiers de résultats bruts produits par Hydra : courbes x(t), profils en long, cartes bi dimensionnelles d'écoulement,
- conditionnement et exportation de fichiers résultats au format MIF/MID en vue d'un post-traitement cartographique par un SIG, couplé à un modèle numérique de terrain M.N.T.

Les résultats de modélisation sont exportés vers le logiciel de post-traitement Hydramap, qui permet la réalisation de cartes d'aléa par croisement avec le MNT issu des levés topographiques disponibles en lit majeur.
2.6.2 Données topographiques et bathymétriques

Les données topographiques utilisées sont de plusieurs types, et ont toutes été levées dans le cadre de l’élaboration du Plan de Prévention des Risques d’inondation par le cabinet Sintégra entre 2012 et 2013, à l’exception des ouvrages hydrauliques associés aux anciens moulins pour lesquels les données étaient déjà disponibles (étude globale d’aménagement et de gestion des rivières du bassin versant de la Tille et de ses affluents, IPSEAU, 1999) et de quelques semis de points en lit majeur :

- levés bathymétriques du lit mineur : 145 profils en travers du lit mineur de la Tille et de ses affluents,
- ouvrages hydrauliques : 130 ouvrages de franchissement (ponts, passerelles, busées...), incluant un profil en travers du lit mineur en amont de chacun d’entre eux.
- levés topographiques du lit majeur :
 - Photogrammétrie réalisée par le cabinet Sintegra en 2012,
 - Semis de points complémentaires sur les terrains de sport de la commune d’Is sur Tille (rive gauche de l’ignon),
 - Semis de point issu des plans d’état initial du lotissement des Clairs Bois à Bressey sur Tille (données Nexity).

2.6.3 Schématisation

2.6.3.1 Généralités

Compte tenu des objectifs de la modélisation, à savoir l’élaboration d’un diagnostic global du secteur d’étude et la production de cartes d’inondation précises fondées sur une topographie fine du terrain naturel, et des caractéristiques locales de la vallée inondable, un schéma mixte de modélisation a été choisi, comprenant une schématisation filaire à casiers et bi-dimensionnelle.

La connexion des différents domaines est assurée par les liaisons latérales, de natures différentes selon la topographie ou le type d’ouvrage.

La figure ci-après illustre les différents domaines coexistant dans les cinq sous-modèles de la zone d’étude.
2.6.3.2 Schématisation filaire

Le domaine filaire modélise l'écoulement le long d'un bief de rivière ou de vallée inondable, caractérisé par une direction privilégiée d'écoulement le long de son axe longitudinal.

Le modèle filaire rend compte du fonctionnement du lit majeur d'un cours d'eau, de ses affluents et des principaux axes d'écoulement.

Le bief de vallée est composé d'une succession de tronçons de rivière entrecoupés de singularités hydrauliques formant obstacle à l'écoulement.

Le modèle filaire se construit à partir des profils en travers. L'hydraulicien synthétise avec 14 points, les profils en travers levés par le géomètre. Il interpole des profils supplémentaires pour rester fidèle à la géométrie du lit du fleuve.

La schématisation filaire est utilisée pour représenter l'ensemble du lit mineur de la Tille et de ses affluents et des bras de dérivation.

2.6.3.3 Schématisation bi-dimensionnelle

La schématisation bidimensionnelle est retenue sur les secteurs de lit majeur où des vitesses d'écoulements conséquentes sont observées ; la quasi-totalité de la vallée est ainsi modélisée par cette représentation. Les voies assurant un écoulement des eaux en lit majeur sont notamment représentées par un maillage très fin.

La rugosité du fond est définie en fonction du type de terrain ou du mode d'occupation de sol en place.
Les berges de chaque lit de cours d'eau sont connectées au domaine bidimensionnel par l'intermédiaire de liaisons spécifiques apparentées à des déversoirs, la cote et la largeur de chacune étant fonction du profil de la berge.

Les singularités ponctuelles au droit des franchissements routiers ou ferrés sont schématisées par :
- des lois d'orifice pour les buses et les ponceaux de décharge,
- des lois de seuil pour les routes, chemins, digues, murets, ... submersibles.

2.6.4 Définition des apports hydrologiques

Les débits des différents cours d'eau sont injectés en amont du modèle ; les hydrogrammes correspondant à chacun des scénarios hydrologiques modélisés sont issus de l'analyse hydrologique.

2.6.5 Calage du modèle

Le modèle est calé sur la crue de mai 2013, par comparaison avec les repères de crue relevés sur le terrain dans le cadre d'enquêtes spécifiques effectuées auprès des riverains et de la commune.